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Abstract: This paper defines constrained similarity between surfaces via minimizing the L2 norm of the gradient of the difference 
between the surfaces. An exact general solution is obtained for the case wherein the surfaces are given as mesh-functions defined on a 
uniform mesh and the imposed constraints are linear. Various examples are presented as well as a MATLAB code for the solution of one of 
the examples. The code could be adjusted to other cases. 
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1. Introduction 
 

Suppose a surface is given and a new surface is sought that 
meets a number of imposed constraints and is as similar in 
behaviour (shape) to the original surface as possible without 
necessarily being close [1] to it. Such shape optimization problems 
may have wide range of applications in various engineering fields 
[2] such as mechanics, fluid mechanics, aerodynamics, general 
transport phenomena, design and engineering of machines and 
equipment, etc. In [3] the authors have introduced constrained 
functional similarity between real-valued functions of one real 
independent variable via minimizing the H1 semi-norm [4] of the 
difference between the functions. A general solution has been 
presented for mesh-functions under linear constraints. In [5] the 
definition has been extended to 2D trajectories and a general 
solution for the discretized case has been obtained. The similarity 
of functions of two and more independent variables is no less 
important. This work presents a definition of constrained similarity 
between real-valued functions of two real independent variables, 
i.e. similarity between surfaces. An exact general solution for mesh 
functions defined on a uniform mesh and subject to linear 
constraints is presented.   
 

2. Constrained similarity of surfaces 
 

Let z*=z*(x,y) and z=z(x,y) be two real-valued functions of the 
real independent variables x∈[xa, xb] and y∈[ya, yb]. The functions 
z* and z define two surfaces. The surface z* will be similar to z, 
under certain given constraints, if z* minimizes the square of the L2 
norm (Euclidean norm) of the gradient of the difference z*−z: 
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and at the same time satisfies the constraints in question. In the 
present work only linear constraints for z* will be considered. For 
example, linear combinations of functional values z* k,l at certain 

points (xk,yl), integral constraints like 1),(*),( =∫ ∫
b
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etc. 
 

3. Exact solution for discretized surfaces under 
linear constraints 
 

Suppose the intervals x∈[xa,xb] and y∈[ya,yb] could be 
partitioned by Nx and Ny mesh points into Nx−1 and Ny−1 intervals 
of size h,  respectively. The set of points {(xk,yl), xk=xa+(k−1)h, 
yl=ya+(l−1)h, k=1,2,…,Nx, l=1,2,…,Ny} defines a uniform mesh on  
the rectangle. Let the function z(x,y) be defined on the mesh, i.e. 
{ zk,l=z(xk,yl), k=1,2,…,Nx, l=1,2,…,Ny}. In order to define 

constrained similarity between the surfaces z* and z expression (1) 
is discretized using the finite differences (z* k+1,l−z* k,l)/h, etc. for the 
respective derivatives ∂z*/∂x, etc. at (xk,yl), and the integral is 
replaced by a sum. The constant factors are omitted since they do 
not affect the minimization. Thus, the following objective function 
is obtained: 
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In order that the formulas, derived in [3], could be used we 

denote zk,l=u k+(l-1).Nx and z*k,l=u* k+(l-1).Nx for  k=1,2,..,Nx, l=1,2,.., Ny 
and introduce the vectors:  
u=[z1,1,z2,1,..,zNx,1,z1,2,z2,2,..,zNx,2,..,z1,Ny,z2,Ny,..,zNx,Ny]

T ,  
u*=[z*1,1,z*2,1,..,z*Nx,1,z*1,2,z*2,2,..,z*Nx,2,..,z*1,Ny,z*2,Ny,..,z*Nx,Ny]

T.  
The minimum of I is sought subject to M linear constraints: 
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where N=NxNy. The constraints (3) can be written in a matrix form 
as Au*=c, where  
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and u*  is the N×1 column-vector of the unknowns. To find the 
minimum of I subject to constraints (3) the Lagrange’s method of 
the undetermined coefficients [6] is used. First, the Lagrangian  
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is introduced, where λj,  j=1,2,…,M, are the Lagrange’s 
undetermined coefficients. Then, the derivatives of J with respect to 
u*i,  i=1,2,…,N  are equated to zero, and the obtained system of 
equations is written in a matrix form as: 

 

,
2
1
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where λ  is the M×1 column-vector of the undetermined coefficients 
and L  is the N×N  matrix (N=NxNy) given below: 
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In order to remove the singularity of L  we need to add the 
equations for the constraints to equations (6). For this reason the 
matrix A  is augmented with N−M rows of zeros to get the N×N 
matrix A . Correspondingly, the column-vector c is augmented with 
N−M zeros to get the N×1 column-vector c . Now, the results for u* 
and λ  derived in [3] can be used: 
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where L  is defined in (7). The right-hand side of (9) contains only 
known quantities. Once the column-vector λ is calculated it is 
substituted into (8) and u*i, i=1,2,…,N are obtained. Then u*i are 
converted to z*k,l and the sought surface is found. 
 

4. Results 
 

In this paragraph two examples are presented with two types 
of constraints: boundary and integral constraints. 
  

Example 1 
Consider the surface z=(x,y) defined by {zk,l=−xk

2+yl
2, 

xk=xa+h(k−1), yi=ya+h(l−1), k=1,2,…, Nx, l=1,2,…, Ny} on a 
rectangular uniform mesh with xa=−2, xb=2, ya=−2, yb=2. The step-
size of the mesh is h=0.2, hence Nx=21 and Ny=21. Using (8) and 
(9), the surface z*, i.e. {z*k,l, k=1,2,…, Nx, l=1,2,…, Ny}, similar to 
z and satisfying the following constraints at the boundaries (along 
the perimeter of the rectangle)  
 
   

lklklk zzz ,,,* ∆+=     (10) 

where k=1,2,…, Nx  for l=1 and l=Ny, and l=2,…, Ny−1 for k=1 and 
k=Nx (all the mesh-points at the boundary), is found for several ∆zk,l 
(see Fig.1). 
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    (a)         (b)             (c) 
 

Fig.1. The original surface z and the similar to it surface z* satisfying 
constraints (10) for (a) ∆zk,l=8; (b) ∆zk,l=xk+yl+4; and (c) ∆zk,l=xk

 2+yl
 2. 

 
Example 2 
Consider the surface z=(x,y) defined by {zk,l=0, xk=xa+h(k−1), 

yi=ya+h(l−1), k=1,2,…, Nx, l=1,2,…, Ny} on a rectangular uniform 
mesh with xa=−2, xb=2, ya=−2, yb=2. The step-size of the mesh is 
h=0.2, hence Nx=21 and Ny=21. Using (8) and (9), the surface z*, 
i.e. {z*k,l, k=1,2,…, Nx, l=1,2,…, Ny}, similar to z and satisfying the 
following constraints at the boundary (along the perimeter of the 
rectangle)  
 
   22
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where k=1,2,…, Nx  for l=1 and l=Ny, and l=2,…, Ny−1 for k=1 and 
k=Nx (all the mesh-points at the boundary), and the integral 
constraint 
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 is found for several values of ∆V (see Fig.2). 
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Fig.2. The original surface z and the similar to it surface z* satisfying 
constraints (11) and (12) for (a) ∆V=600; (b) ∆V=1600; and (c) ∆V=2400. 

  
5. Conclusion  

 
This work defined constrained similarity between surfaces via 

minimizing the L2 norm of the gradient of the difference between 
the surfaces. An exact general solution was obtained for discreized 
surfaces under linear constraints. The results agree with what is 
expected from similarity of surfaces under constraints.  
 

6. Appendix   
 

In this appendix a MATLAB  code for solving Example 1(c) is 
presented. The variables A_, c_ , and L_ are used for A , c , and 

L , while zs , us , dz , and du  are used for z*, u*, ∆z, and ∆u, 
respectively. The variable lambda  is used for λ . To define the 
needed vectors and matrices first the corresponding vectors and 
matrices composed of zeros and having the required size are 
defined. The obtained graph needs to be rotated to be seen from 
aside.  
 
func tion main 
  
 Nx=21; Ny=21; xa=-2; ya=-2; h=0.2; 
 M=2*Nx+2*Ny-4; N=Nx*Ny; 
  
 x=zeros(Nx,1); y=zeros(Ny,1); 
 for k=1:Nx 
  x(k)=xa+h*(k-1); 
 end 
 for l=1:Ny 
  y(l)=ya+h*(l-1); 
 end 
  
 z=zeros(Nx,Ny); u=zeros(N,1); 
 dz=zeros(Nx,Ny); du=zeros(N,1); i=1; 
 for l=1:Ny 
  for k=1:Nx 
   z(k,l)=-x(k)*x(k)+y(l)*y(l); u(i)=z(k,l); 
   dz(k,l)=x(k)*x(k)+y(l)*y(l); du(i)=dz(k,l); 
   i=i+1; 
  end 
 end 
  
 A=zeros(M,N); c=zeros(M,1); j=1; 
 for k=1:Nx 
  i=k; A(j,i)=1; c(j)=u(i)+du(i); j=j+1;  
 end 
 for l=2:Ny-1 
  i=Nx*(l-1)+1; A(j,i)=1; c(j)=u(i)+du(i);  
  j=j+1; 
  i=Nx*(l-1)+Nx; A(j,i)=1; c(j)=u(i)+du(i);  
  j=j+1; 
 end 
 for k=1:Nx 
  i=Nx*(Ny-1)+k; A(j,i)=1; c(j)=u(i)+du(i);  
  j=j+1;  
 end 
  
 A_=zeros(N,N); c_=zeros(N,1); 
 for j=1:M 
  c_(j)=c(j);     
  for i=1:N 
   A_(j,i)=A(j,i); 
  end 
 end 
  

 L_=zeros(N,N); 
 L_(1,1)=-2; L_(Nx,Nx)=-2;  
 L_(N-Nx+1,N-Nx+1)=-2; L_(N,N)=-2; 
 for n=2:(Nx-1) 
  L_(n,n)=-3; L_(N-Nx+n,N-Nx+n)=-3; 
  L_(n+1,n)=1; L_(N-Nx+n+1,N-Nx+n)=1; 
  L_(n-1,n)=1; L_(N-Nx+n-1,N-Nx+n)=1; 
  L_(n+Nx,n)=1; L_(N-Nx+n-Nx,N-Nx+n)=1; 
 end 
 L_(2,1)=1; L_(Nx-1,Nx)=1;  
 L_(1+Nx,1)=1; L_(Nx+Nx,Nx)=1; 
 L_(N-Nx+2,N-Nx+1)=1; L_(N-Nx+1-Nx,N-Nx+1)=1;  
 L_(N-1,N)=1; L_(N-Nx,N)=1; 
 for n=Nx+1:N-Nx 
  L_(n,n)=-4; L_(n+1,n)=1; L_(n-1,n)=1;  
  L_(n+Nx,n)=1; L_(n-Nx,n)=1; 
 end 
 for n=1:Ny-2 
  L_(Nx*n+1,Nx*n+1)=-3;  
  L_(Nx*n+Nx,Nx*n+Nx)=-3; 
  L_(Nx*n,Nx*n+1)=0; L_(Nx*n+Nx+1,Nx*n+Nx)=0; 
 end 
  
 H=inv(L_+A_); d=A_*u-c_; 
  
 lambda=(A*H*A')\(A*u-c-A*H*d)*2; 
 us=u-H*(A'*lambda/2+d); 
  
 i=1; 
  
 for l=1:Ny 
  for k=1:Nx   
   zs(k,l)=us(i); 
   i=i+1; 
  end 
 end 
  
 hold on; surface(x,y,z'); surface(x,y,zs'); 
  
end 
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