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MINIMIZING THE L> NORM OF THE GRADIENT OF THE SURFACE DIFFERENCE

PhD Student Filipov S., PhD Nikolov V., PhD Gospodinov |.
Depatment of Computer Science — University of Chemical Technology and Metallurgy, Bulgaria
idg2@cornell.edu

Abstract: This paper defines constrained similarity between surfaces via minimizing the L? norm of the gradient of the difference
between the surfaces. An exact general solution is obtained for the case wherein the surfaces are given as mesh-functions defined on a
uniform mesh and the imposed constraints are linear. Various examples are presented as well as a MATLAB code for the solution of one of
the examples. The code could be adjusted to other cases.
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1. Introduction constrained similarity between the surfagesandz expression (1)
is discretized using the finite differencesi(1,—-z*«,)/h, etc. for the
Supmwse a surface is given and a new surface is sought thggspective derivative$z/0x, etc. at %.y), and the integral is
meets a number of imposed constraints and is as similar i¢placed by a sum. The constant factors are omitted since they do
behaviour (shape) to the original surface as possible withoutot affect the minimization. Thus, the following objective function
necessarily being close [1] to it. Such shape optimization problerﬁ§ obtained:
may have wide range of applications in various engineering fields

[2] such as mechanics, fluid mechanics, aerodynamics, general N1 Ny )
transport phenomena, design and engineering of machines and I= (7 =2%0) = (Zeas 2D +
equipment, etc. In [3] the authors have introduced constrained N kN:l_l':l

functional similarity between real-valued functions of one real +5°% (Z 11 =2 )~ (Zeyo = 2 2)
independent variable via minimizing th& semi-norm [4] of the ek R A

difference between the functions. A general solution has been
presented for mesh-functions under linear constraints. In [5] the In order that the formulas, derived in [3], could be used we
definition has been extended to 2D trajectories and a generabnotez=Uyu(.1ynx ANAZ | =U* g gqynx fOr k=1,2,..N,, 1=1,2,..,N,
solution for the discretized case has been obtained. The similarignd introduce the vectors:
of functions of two and more independent variables is no lesg=[z, ,z,,.. 2,120,222, 2 2Nk 20+ 24 Ny Z2 Ny »ZNx,Ny]Tv
important. This work presents a definition of constrained Slml_lantyU*:[Zkl,le*Z,lv--vzkNx,lvzkl,ZvZ*Z,Zv--vZ*Nx,21--vzk1,Nyvzk2,Nyv--zkNx,Ny]T-
between real-valued functions of two real independent variablesihe minimum ofl is sought subject o linear constraints:
i.e. similarity between surfaces. An exact general solution for mesh
functions defined on a uniform mesh and subject to linear N .
constraints is presented. > AuU* =c, j=12..M<N. ®)
i=1
2. Congtrained similarity of surfaces whereN=N,N,. The constraints (3) can be written in a matrix form

Let zx=z*(x,y) andz=z(x,y) be two real-valued functions of the asAu*=c, where

real independent variable&[x,, %] and y([Y,, Yo]. The functions

7z and z define two surfaces. The surfazewill be similar to z, Ar A o Ay G

under certain given constraints Zif minimizes the square of thé& AL A, L A c, (4)

norm (Euclidean norm) of the gradient of the differerfcez: A= . o .
Yo X az* a % a a 2 A\Ill AVIZ o AVIN CM

|0z*-0z|P= II[—@ + %28 %8 ——Zéyj dxdy =
YaXa aX

Ty Yoox ay and u* is the Nx1 column-vector of the unknowns. To find the

WAk g7\ W azx 9z ) minimum of | _subject to _(:onstrair_]ts 3) the_ Lagrange’s me.thod of
= I I(g _&j dxdy+”[67y _Fy] dxdy the undetermined coefficients [6] is used. First, the Lagrangian
YaXa YaXa
. . . . Z14S SS AU (5)
and at the same time satisfies the constraints in question. In the J=I +JZ;,(/‘1(CJ- ;Ajiu i)]

present work only linear constraints fdrwill be considered. For

example, linear combinations of functional valugg, at certain . . .
pe, Rl is introduced, whereA/;, ji=1,2,...M, are the Lagrange's

points &), integral constraints Iik?;bf:bf(X, y)z*(x,y)dxdy=1:  undetermined coefficients. Then, the derivatives with respect to
o u*;, i=1,2,...N are equated to zero, and the obtained system of

etc. . . . . .
equations is written in a matrix form as:

3. Exact solution for discretized surfaces under
. . Tix=1 _} T (6)
linear constraints Lir=Lu-SA'4,

Supmse the intervalsxO[x,,X] and yO[yaYs] could be
partitioned byN, andN, mesh points intd,—1 andN,~1 intervals
of sizeh, respectively. The set of pointsx{fy), x=Xa+(k-1)h,
yi=Ya+(I-1)h, k=1,2,... Ny, 1=1,2,...N,} defines a uniform mesh on
the rectangle. Let the functiarix,y) be defined on the mesh, i.e.
{zg=z(x0y), k=1,2,..Ny, 1=1,2,...N;}. In order to define

where/ is theMx1 column-vector of the undetermined coefficients
and L is theNxN matrix (N=N,N,) given below:
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Ny Ny Ny Ny Ny
r A N A N A N A N A I
-2 1 00O 1 0 O
1-3 10 0 0
0 1-31 0 1
1-3 1
0o 1 -2 0
1 0 O -3 1 00O 1 0
1-4 10
0o 0 1 0 1-41 0 1
1 0 1 -4 1 1
1 0o 1 -3 0o 1
1 0 -3 1 00
1-4 10
0o 0 1 0 1-41
L= o
1-4 1
0 0o 1 -3
-3 1 00 1 0
1-4 10 0 0
0 1-41 0 1
1-4 1 0
0o 1 -3 0
1 0 O -2 1 00O
1-3 10
0o 0 1 0 1-31
1-3 1 )
0o 1 0 1 -2

In order to remove the singularity of we need to add the wherk=1,2,...,N, for|=1 andl=N,, andl=2,...,N,~1 fork=1 and
equations for the constraints to equations (6). For this reason ttkeN, (all the mesh-points at the boundary), is found for several
matrix A is augmented wittN-M rows of zeros to get thExN (see Fig.1).

matix A . Correspondingly, the column-vectois augmented with
N-M zeros to get thilx1 column-vectore . Now, the results fon*
andA derived in [3] can be used:

u*=u—([+ﬂ)‘1}AT/l+Ku—é , (®) S

A=2AC +A) AT ) (Au-c- AL + A)*(Au-g)). (9)

©

where L is defined in (7). The right-hand side of (9) contains only  Fig.1. Theoriginal surface zand the similar to it surface z* satisfying

known quantities. Once the column-vectdris calculated it is congtraints (10) for (a) 4zq=8; (b) Az =x#i#4; and (c) 4z =%
substituted into (8) and*;, i=1,2,...N are obtained. Theu*; are
converted t@*y, and the sought surface is found. Example 2 )
Consider the surface=(x,y) defined by {z,,=0, x=x,+h(k-1),
4. Results yi=Yath(I-1), k=1,2,...,N,, 1=1,2,..., Ny} on a rectangular uniform

mesh withx;=-2, xy=2, Y.=—2, y»=2. The step-size of the mesh is
In this paragraph two examples are presented with two typed=0-2, henceN,=21 andN,=21. Using (8) and (9), the surfazg

of constraints: boundary and integral constraints. i.e. {Z'a, k=1,2,...,Ny, I=1,2,...,N}, similar to z and satisfying the
following constraints at the boundary (along the perimeter of the
Example 1 rectangle)
Consider the surfacez=(xy) ddined by {Z =—x>+y?’,
XXath(k-1), yimyath(-1), k=1,2,..., Ny, 1=1,2,..., N} on a AN AR A 1D

rectangular uniform mesh with=-2, =2, y.=—2, yp=2. The step-
size of the mesh i8=0.2, henceN,=21 andN,=21. Using (8) and  wherek=1,2,...,N, for|=1 andl=N,, andl=2,..., N,~1 for k=1 and

(9), the surface*, i.e. {z¥y), k=1,2,...,N,, 1=1,2,...,N,}, similar to k=N, (all the mesh-points at the boundary), and the integral
z and satisfying the following constraints at the boundaries (alongonstraint
the perimeter of the rectangle)

N, Ny N, Ny
2%, =2, +1z (10) %, = ZZ 7, tAV (12)
Kl 1 Kl =1 1=1 k=1 171

is found for several values AV (see Fig.2).
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L_=zeros(N,N);

L_(1,1)=-2; L_(Nx,Nx)=-2;

L_(N-Nx+1,N-Nx+1)=-2; L_(N,N)=-2;

for n=2:(Nx-1)

L_(n,n)=-3; L_(N-Nx+n,N-Nx+n)=-3;

L_(n+1,n)=1; L_(N-Nx+n+1,N-Nx+n)=1;

L_(n-1,n)=1; L_(N-Nx+n-1,N-Nx+n)=1;

L_(n+Nx,n)=1; L_(N-Nx+n-Nx,N-Nx+n)=1;

end
L_(2,1)=1; L_(Nx-1,Nx)=1;
Fig.2. The original surface zand the similar to it surface z* satisfying L_(1+Nx,1)=1; L_(Nx+Nx,Nx)=1;
congtraints (11) and (12) for (a) 4v=600; (b) AV=1600; and (c) AV=2400. L_(N-Nx+2,N-Nx+1)=1; L_(N-Nx+1-Nx,N-Nx+1)=1;

L_(N-1,N)=1; L_(N-Nx,N)=1;
. for n=Nx+1:N-Nx
5. Conclusion L_(n,n)=-4; L_(n+1,n)=1; L_(n-1,n)=1;
L_(n+Nx,n)=1; L_(n-Nx,n)=1;
This work defined constrained similarity between surfaces via end
minimizing theL? norm of the gradient of the difference between  for n=1:Ny-2
thesurfaces. An exact general solution was obtained for discreized L_(Nx*n+1,Nx*n+1)=-3;
surfaces under linear constraints. The results agree with what is ~ L_(NX*n+Nx,Nx*n+Nx)=-3;

expected from similarity of surfaces under constraints. e"n—d(NX*”'NX*”J'l):O; L_(Nx*n+Nx+1,Nx*n+Nx)=0;

6. Appendix H=inv(L_+A ); d=A_*u-c_;

lambda=(A*H*AN(A*u-c-A*H*d)*2;

In this appendix a MTLAB code for solving Example 1(c) is
us=u-H*(A*lambda/2+d);

preented. The variables , c_, andL_ are used forA, ¢, and
L, while zs, us, dz, anddu are used for*, u*, Az, and Au, i=1;
regectively. The variabléambda is used ford . To define the
needed vectors and matrices first the corresponding vectors ar@" =1:Ny
matrices composed of zeros and having the required size ar gg(flﬁﬁé(i)-
defined. The obtained graph needs to be rotated to be seen frorri1:i+l'; '
aside. end
end
func tion main
hold on; surface(x,y,z'); surface(x,y,zs");
Nx=21; Ny=21; xa=-2; ya=-2; h=0.2;

M=2*Nx+2*Ny-4; N=Nx*Ny; end

= Nx,1); y= Ny,1);
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